






June 2007
IRON GATES SEDIMENT EVALUATION -
SERBIA
Final Report

PREPARED BY:
Institute for the Development of Water Resources "Jaroslav Cerni"
AUTHORS:
Milena Damjanovic, Chem.Eng.
Nenad Milenkovic, Chem.Eng.
Jaroslav Cerni Institue
Jaroslava Cernog st. 80
Beograd, Pinosava 11226, SERBIA
TABLE OF CONTENTS
1
INTRODUCTION ........................................................................................................ 1
2
2006 SEDIMENT SURVEY RESULTS AND DATA ASSESSMENT..................................... 1
2.1
Heavy metals..................................................................................................... 5
2.2
Nutrients ........................................................................................................... 9
2.3
Organic Pollutants ........................................................................................... 11
2.3.1 Polyaromatic
Hydrocarbons (PAHs) ................................................................... 11
2.3.2 Pesticides ..................................................................................................... 14
2.3.3 Petroleum
Hydrocarbons ................................................................................. 14
2.3.4 Polychlorinated
biphenyls ................................................................................ 15
2.3.5 Other WFD Priority Pollutants........................................................................... 15
3
CONCLUSIONS OF THE SEPTEMBER 2006 SEDIMENT SURVEY ................................. 17
4
RECOMMENDATIONS FOR FURTHER MONITORING PROGRAMMES .......................... 18
5
Annex 1: Results of sediment sample particle-size distribution analysis ............... 19
6
ANNEX 2: Analytical results of the sediment investigation in Sept. 2006 ................ 24
5
ANNEX 1: Results of sediment sample particle-size distribution analysis
6 ANNEX
2:
Analytical results of the sediment investigation in September 2006
1 INTRODUCTION
Sediment is identified as the largest contaminant of surface waters. Therefore, the understanding
of sediment-bound pollutants requires an understanding of sediment transport and deposition. On
the other hand, the pollution of sediment already deposited in a reservoir can be an indicator of the
water quality during the reservoir's lifetime.
The objectives of this project were to determine the sediment quality in the Iron Gate Reservoir,
document the occurrence of specified pollutants, and prepare initial recommendations for future
protection of the Danube River and the Black Sea. It is difficult to estimate long-term trends of the
selected chemical constituents.
The project involved an assessment of data and information on the Iron Gate sediments and is a
step forward in identifying existing information gaps. The project included field activities,
laboratory analyses, and the preparation of a study report.
To achieve the objectives of the project, national teams from Serbia and Romania collected and
reviewed available data and information on sediment quality in the Iron Gates reservoir area. The
next step in identifying potential environmental impacts on the Danube and the Black Sea was a
sediment survey, which was carried out in September of 2006 by the ship ARGUS. Sediment
samples were taken from both the left and right banks of the river and analyzed for an agreed list
of determinands at national laboratories and at the VITUKI.
2 2006 SEDIMENT SURVEY RESULTS AND DATA
ASSESSMENT
As part of the project, a sampling survey was carried out on September 11 to 13, 2006 by the
ship ARGUS. Grab and core samples were taken at 10 pre-selected sections in the Iron Gate
reservoir area, along the Danube reach from river km 928 (Mala Vrbica/Simian) to 1107 (upstream
from the Velika Morava). The sampling sites and sampling dates are identified in Table 1.
Sediment samples were analyzed in order to assess pollutant accumulation in the sediment. The
parameters included: total heavy metals (Zn, Cu, Cr-tot., Ni, Cd, As, Hg and Pb), nitrogen content
(total N), phosphorus content (total P), extractable petroleum hydrocarbons, organochlorine
pesticides (DDT, lindane, aldrin, endrin, dieldrin), nonylphenol, octylphenol, pentachlorphenol,
di(2-ethylhexyl)phthalate, PAHs, and PCBs.
Surface sediment was sampled by a standard Ponar dredge. Grab sediment samples were taken
from both the left and right banks of the river, at each sampling site, except at Site 8 (Dubova,
river km 971) where no sediment was found on the left side. This was followed by on-board wet
sieving in order to obtain less-than 63 µm fractions for later chemical analysis in the lab.
Core sampling was carried out using an Eijkelkamp core sampler and samples were taken from the
right side at river km 1077 (Stara Palanka Ram) and at km 924 (Vrbica/Simian), as well as from
both sides of the river at sampling sites 7 and 9 (Donji Milanovac, river km 991; and Orsova, river
km 956, respectively). The core sample was then divided into 10-centimeter slices for further
analysis in the lab.
Measurements and laboratory tests were performed at the Public Health Institute of Belgrade,
applying prescribed and standard methods. The results of sediment sample particle-size
distribution analysis are presented in Annex 1. Measurement results are presented in Annex 2.
Short REPORT TITLE | PAGE 1
1
Table 1: September 2006 sediment survey sampling sites and sampling dates
GPS Coordinates
Iron Gates
Sample
Km
Location
Location
Sampling Date
S. Time
in
Latitude Longitude
sample number
type
index
Profile
[YYYY/MM/DD] [HH:MM]
° ` `` ° ` ``
Upstream from the Velika
1 Grab
1107
Morava
L
44 43 33.8 21 00 09.9 2006.09.11
13:30
Upstream from the Velika
1 Grab
1107
Morava
R
44 42 58.1 21 00 25.8 2006.09.11
12:50
Downstream from the Velika
2 Grab
1097
Morava
L
44 44 16.4 21 07 37.0 2006.09.11
14:45
Downstream from the Velika
2 Grab
1097
Morava
R
44 43 44.8 21 07 51.8 2006.09.11
14:57
-
Core
1077 Stara Palanka - Ram
R
44 48 33.0 21 19 43.2 2006.09.11
17:00
0-10
cm
-
10-20 cm
-
20-30 cm
-
30-40 cm
-
40-50 cm
-
50-60 cm
-
60-70 cm
-
70-77 cm
3
Grab
1072 Bazias
L
44 48 12.9 21 23 31.0 2006.09.11
19:10
3
Grab
1072 Bazias
R
44 48 17.3 21 22 48.4 2006.09.11
19:30
4
Grab
1061 Veliko Gradiste / Belobresca
L
44 46 33.2 21 29 44.6 2006.09.12
10:00
4
Grab
1061 Veliko Gradiste / Belobresca
R
44 46 05.3 21 29 36.3 2006.09.12
10:20
5
Grab
1040 Golubac / Koronin
L
44 40 06.7 21 41 20.0 2006.09.12
12:15
5
Grab
1040 Golubac / Koronin
R
44 39 40.8 21 41 2.6 2006.09.12
12:00
6
Grab
1022 Dobra Lubcova
L
44 38 59.9 21 53 51.3 2006.09.12
14:10
6
Grab
1022 Dobra Lubcova
R
44 38 38.7 21 52 56.4 2006.09.12
14:00
7
Grab
991 Donji Milanovac
L
44 28 45.4 22 08 35.8 2006.09.13
10:30
7
Grab
991 Donji Milanovac
R
44 27 56.3 22 08 15.1 2006.09.13
9:30
2
GPS Coordinates
Iron Gates
Sample
Km
Location
in
Latitude Longitude
Sampling Date
S. Time
sample number
type
index Location
Profile
[YYYY/MM/DD] [HH:MM]
° ` `` ° ` ``
-
Core
991 Donji Milanovac
L
44 28 45.4 22 08 35.8 2006.09.13
12:00
0-10
cm
-
10-20 cm
-
20-30 cm
-
30-40 cm
-
40-50 cm
-
50-60 cm
-
60-70 cm
-
70-74 cm
-
Core
991 Donji Milanovac
R
44 27 56.3 22 08 15,1 2006.09.13
9:45
0-10
cm
-
10-20 cm
-
20-30 cm
-
30-40 cm
-
40-50 cm
-
50-60 cm
-
60-67 cm
No sediment found on the left side
8
Grab
971 Dubova
R
44 36 23.0 22 16 24,6 2006.09.13
11:40
9
Grab
956 Tekija / Orsova
L
44 41 26.0 22 23 43,9 2006.09.13
13:50
9
Grab
956 Tekija / Orsova
R
44 41 03.4 22 24 26,1 2006.09.13
13:20
-
Core
956 Tekija / Orsova
L
44 41 26.0 22 23 43,9 2006.09.13
14:00
0-10 cm
10-20 cm
20-30 cm
30-40 cm
40-50 cm
50-60 cm
60-70 cm
3
GPS Coordinates
Iron Gates
Sample
Km
Location
in
Latitude Longitude
Sampling Date
S. Time
sample number
type
index Location
Profile
[YYYY/MM/DD] [HH:MM]
° ` `` ° ` ``
70-78 cm
Core
956 Tekija / Orsova
R
44 41 03.8 22 24 26.7 2006.09.13
13:30
0-10
cm
10-20 cm
20-30 cm
30-40 cm
40-50 cm
50-60 cm
60-70 cm
70-82 cm
10
Grab
928 Mala Vrbica / Simian
L
44 37 12.1 22 41 06.9 2006.09.13
19:30
10
Grab
928 Mala Vrbica / Simian
R
44 36 29.8 22 40 47.6 2006.09.13
19:00
Core
928 Mala Vrbica / Simian
R
44 36 29.8 22 40 47.6 2006.09.13
19:00
0-10
cm
10-20 cm
20-30 cm
30-40 cm
40-50 cm
50-60 cm
60-70 cm
70-80 cm
4
2.1 HEAVY METALS
Analysis of heavy metals (As, Cu, Zn, Cr-tot., Cd, Ni, Pb and Hg) in sediments of the Danube River
was carried out using a wet sieved, below 63µm fraction to minimize the "dilution" effect of larger
particles with low element concentrations.
Figure 1 shows the number of sediment samples (%) for which determined element concentrations
exceed quality targets. The concentrations of copper, zinc and nickel were above quality targets for
more than one half of all samples. The sediments of the Danube River can be regarded as
unpolluted in terms of arsenic, chromium, mercury, and lead.
100
90
80
70
60
%
50
40
30
20
10
0
c
r
c
.
el
ad
Zin
-tot
ium
Le
rcury
Arseni
Coppe
ium
dm
Nick
Ca
Me
Chrom
Figure 1. Number of sediment samples (%) whose heavy metal concentrations exceed the quality
targets listed in Table 2.
Concentrations of cadmium and mercury were below the detection limit of the method. Since the
determined concentrations of mercury (<0.4 mg/kg) are below the quality target of 0.8 mg/kg,
sediment samples can be regarded as unpolluted. However, the detection limit for cadmium (2.0
mg/kg) is higher than the quality target (1.2 mg/kg) and, as a result, a reliable picture of sediment
pollution cannot be obtained.
Table 2. Ranges of element concentrations in bottom sediment samples of the Danube River, and
comparison with quality targets
Concentration (mg/kg)
Heavy metals
QT
Min. Max.
Average
(mg/kg)
As 5.8 17.1 9.9 20
Cu 40.9
310.7
77.9 60
Zn 101.1
340.7
246.2 200
Cr-tot. 25.1 68.3 46.9 100
Cd <2.0 <2.0 - 1.2
Ni 33.4
105.2
60.0 50
Pb 23.2 77.6 51.9 100
Hg <0.4 <0.4 -
0.8
"<" below the quantitation limit of the method.
The investigation of the upper sediment layer quality revealed that the sediment can be regarded
as unpolluted in terms of arsenic, chromium and lead. The concentrations of copper, nickel and zinc
were above quality targets. The spatial distribution of analyzed metals in sediments from the
studied area is shown in Figure 2.
A graphical representation of zinc and copper concentrations along the investigated section of the
Danube reveals a slight increasing trend downstream. Relatively comparable copper concentrations
were found on both the left and right banks of the river, except for copper content at the Golubac
profile (river km 1040). Figure 2 clearly shows a sudden increase in the copper concentration in the
surface layer of the sediment on the left bank of the river. It rose to about 310 mg/kg, and then
dropped back to 65 mg/kg.
The distribution of other elements along the investigated sector is heterogeneous. In general,
heavy metal concentrations in sediment samples from the right bank of the river are slightly higher
than in those from the left bank. In the case of arsenic, lead, chromium and nickel, higher values
were found along the upper stretch of the Danube, upstream from the Golubac profile. There is no
significant downstream tendency of measured parameters.
Based on element concentrations in sediment samples taken from the left bank of the river, there
is no apparent downstream tendency. Relatively constant concentrations of chromium and nickel
up to river km 1061 were followed by a slight decrease up to river km 1040 (Golubac). An
increasing trend was noted downstream from the Golubac profile. A similar pattern was observed
for zinc and lead.
6
As
QT=100 mg/kg
Cr
QT=20 mg/kg
20
100
80
16
mg/kg
mg/ 60
kg
12
40
8
20
4
0
1170 1097 1072 1061 1040 1022 990 971 956 924
1170 1097 1072 1061 1040 1022 990 971 956 924
r km
r km
Left-bank
Right-bank
Left-bank
Right-bank
Pb
Ni
QT=100 mg/kg
QT=50 mg/kg
100
120
80
100
mg/ 60
kg
mg/ 80
kg
40
60
20
40
0
20
117010971072106110401022 990 971 956 924
1170 1097 1072 1061 1040 1022 990 971 956 924
r km
r km
Left-bank
Right-bank
Left-bank
Right-bank
Cu
QT=60 mg/kg
Zn
QT=200 mg/kg
350
350
300
300
250
250
200
mg/kg
mg/kg
200
150
100
150
50
100
0
50
1170 1097 1072 1061 1040 1022 990 971 956 924
1170 1097 1072 1061 1040 1022 990 971 956 924
r km
r km
Left-bank
Right-bank
Left-bank
Right-bank
Figure 2. Longitudinal variation in bottom-sediment heavy metal concentrations
Lead concentrations in sediment core samples collected from the studied area are in the interval
from 28 to 74 mg/kg, with the exception for two measurements, which were close to the quality
target of 100 mg/kg. Maximum values were measured at river km 991 (the Donji Milanovac
profile). No significant changes in lead content were found in sediment core samples taken at the
Tekija and Mala Vrbica profiles. However, at the Donji Milanovac profile, a significant increase was
detected from the sediment surface down to 50 cm. Thereafter, lead concentrations start
decreasing to the bottom.
The vertical distribution of heavy metals in sediment core samples is shown in Figure 3.
Total zinc content in sediment core samples varied from 150 to 463 mg/kg. In general, the highest
concentrations were found in the layer from -40cm to 70cm. The maximum zinc content was
registered at the Tekija profile, at a depth of 70cm. A graphical representation of zinc
concentrations shows a decreasing trend from deeper layers to the surface. The distribution of zinc
concentrations shows that most of the data are above the quality target.
7
A similar pattern was observed for copper. Measured values were higher than the quality target of
60 mg/kg. The maximum copper content was registered at the Donji Milanovac profile (159
mg/kg), at a depth of 60cm.
mg/kg As
mg/kg Cr
5.0
7.0
9.0
11.0
13.0
15.0
17.0
40
50
60
70
80
0
0
10
10
20
20
30
30
991-R
991-R
40
40
956-R
956-R
cm
cm
50
924-R
50
924-R
60
60
70
70
80
80
90
90
mg/kg Pb
mg/kg Ni
20
40
60
80
100
120
40
50
60
70
80
0
0
10
10
20
20
30
30
991-R
40
40
991-R
956-R
cm
cm
956-R
50
50
924-R
924-R
60
60
70
70
80
80
90
90
mg/kg Cu
mg/kg Zn
40
60
80
100
120
140
160
140 180 220 260 300 340 380 420 460
0
0
10
10
20
20
30
30
991-R
40
40
991-R
956-R
cm
956-R
cm
50
924-R
50
924-R
60
60
70
70
80
80
90
90
Figure 3. Vertical variation in heavy metal concentration in sediment core samples
Chromium concentrations were below the quality target of 100 mg/kg, indicating that the sediment
is not polluted with this metal. Measured values range from 41.5 to 74.1 mg/kg. Figure 3 shows a
decreasing chromium content from deeper layers to the surface. The highest chromium
concentrations were found in sediment cores collected at the Donji Milanovac and Tekija profiles.
No arsenic concentration exceeds the quality target of 20 mg/kg and, therefore, the sediment can
be regarded as unpolluted in terms of arsenic. The variation interval of arsenic concentrations is
6.7-16.6 mg/kg. As shown in Figure 3, arsenic content exhibits a decreasing trend from deeper
layers to the surface.
8
No significant changes in nickel distribution can be observed. The total nickel content ranges from
45.0 to 79.3 mg/kg. Measured values were higher than the quality target with the exception for
one measurement, which was just below the quality target of 50 mg/kg. Maximum concentrations
were measured in the sediment sampled from the Donji Milanovac profile.
In general, lowest element concentrations were observed in the sediment core sampled from the
Mala Vrbica profile.
2.2 NUTRIENTS
Total nitrogen and total phosphorus concentrations were measured in sediment samples. Figures 4
and 5 show longitudinal variations in total P and total N in the bottom sediment. The values of total
P in the surface sediment layer ranged from 638 to 1165 mg/kg, with an average concentration of
900 mg/kg. As shown in Figure 4, lower values were registered at the Golubac and Mala Vrbica
profiles (left bank). Maximum values were detected at the Mala Vrbica profile (right bank),
downstream of the Iron Gate I HPNS.
Total P
1200
1000
/
k
g
800
mg
600
400
1170 1097 1072 1061 1040 1022 990
971
956
924
r km
Left bank
Right bank
Figure 4. Longitudinal variation in bottom-sediment total P concentration
Total nitrogen content varied from 1600 to 3400 mg/kg, with an average concentration of 2400
mg/kg, as shown in Figure 5. The concentration increased downstream, from river km 1170 to
1022 of the Serbian section of the Danube. There was a sudden decrease in nitrogen content at the
Donji Milanovac profile. It dropped to about 1700 mg/kg, and then increased again to 3400 mg/kg.
As shown in Figure 5, the distribution of total nitrogen along the investigated Romanian sector is
heterogeneous.
9
Total N
4000
3500
3000
/
k
g
2500
mg 2000
1500
1000
1170 1097 1072 1061 1040 1022 990
971
956
924
r km
Left bank
Right bank
Figure 5. Longitudinal variation in bottom-sediment total N concentration
Total phosphorus and total nitrogen distributions in the sediment core samples are shown in
Figures 6 and 7. The overall phosphorus contamination of sediment cores was in the similar range
as that of surface sediment samples. Total P concentrations range from 628 to 1580 mg/kg, with
an average concentration of 1048 mg/kg. The highest values were recorded in deeper sediment
layers. Maximum values were detected at the Mala Vrbica profile, downstream of the Iron Gate I
HPNS.
mg/kg P
400
600
800
1000
1200
1400
1600
0
10
20
30
40
991-R
cm
956-R
50
924-R
60
70
80
90
Figure 6. Vertical variations in bottom-sediment total phosphorus concentration
10
mg/kg N
1000
1500
2000
2500
3000
3500
4000
0
10
20
30
40
991-R
cm
956-R
50
924-R
60
70
80
90
Figure 7. Vertical variations in bottom-sediment total nitrogen concentration
As shown in Figure 7, no characteristic concentration distribution was found in sediment core
samples, with the exception of the Donji Milanovac profile. The total nitrogen content varied
between 1300 and 2700 mg/kg. Maximum concentrations were registered in the 40-60 cm layer.
2.3 ORGANIC POLLUTANTS
2.3.1 Polyaromatic Hydrocarbons (PAHs)
The sum of the 16 analyzed PAH congeners varied between 56.4 and 477.5 µg/kg in bottom
sediment samples. The results of PAH determinations for bottom sediment samples are shown in
Figure 8.
Fluoranthene, Pyrene and Phenantrene dominated PAH contamination of most of the sediment
samples. The PAH distribution in sediment core samples is shown in Figures 9 through 11. The
highest values were recorded in the deeper sediment layers.
11
Total
Naphtalene
500,0
Acenaphthylene
450,0
Acenaphthene
400,0
Fluorene
350,0
Phenantrene
µg/kg
300,0
Anthracene
PAHs
Fluoranthene
250,0
Pyrene
200,0
Chryzene
150,0
Benzo(a)anthracene
100,0
Benzo(b)fluoranthene
50,0
Benzo(k)fluoranthene
0,0
Benzo(a)pyrene
1
2
-1
3
-1
1
Indeno(c,d)pyrene
4
-1
0
0
5
-1
0
9
7
6
-1
0
7
7
L
-
7
1
0
6
2
L
8
-
0
4
1
L
9
2
0
L
9
-9
9
2
L
Dibenzo(a,h)anthracene
-
1
9
7
0
0
5
1
L
L
-
6
R
9
2
R
4 R
Benzo(g,h,i)perylene
Figure 8. Longitudinal variation in individual PAH concentrations in bottom sediment samples
core 991-R
500
Naphtalene
450
Acenaphthylene
Acenaphthene
400
Fluorene
350
Phenantrene
Anthracene
300
PAH
Fluoranthene
250
ug/kg
Pyrene
200
Chryzene
Benzo(a)anthracene
150
Benzo(b)fluoranthene
100
Benzo(k)fluoranthene
50
Benzo(a)pyrene
Indeno(c,d)pyrene
0
Dibenzo(a,h)anthracene
70
50
Benzo(g,h,i)perylene
30
10
cm
Total
Figure 9. Vertical variation in individual PAH concentrations in sediment core samples
12
core 956-R
1000
Naphtalene
Acenaphthylene
900
Acenaphthene
800
Fluorene
700
Phenantrene
Anthracene
600
PAH
Fluoranthene
500
ug/kg
Pyrene
400
Chryzene
300
Benzo(a)anthracene
Benzo(b)fluoranthene
200
Benzo(k)fluoranthene
100
Benzo(a)pyrene
0
Indeno(c,d)pyrene
Dibenzo(a,h)anthracene
70
50
Benzo(g,h,i)perylene
30
10
cm
Total
Figure 10. Vertical variation in individual PAH concentrations in sediment core samples
core 924-R
700
Dibenzo(a,h)anthracene
Acenaphthylene
600
Anthracene
Naphtalene
500
Acenaphthene
Fluorene
400
PAH
Indeno(c,d)pyrene
ug/kg
Chryzene
300
Benzo(k)fluoranthene
Benzo(a)pyrene
200
Benzo(b)fluoranthene
Benzo(g,h,i)perylene
100
Benzo(a)anthracene
0
Phenantrene
Pyrene
70
50
cm
Fluoranthene
30
10
Total
Figure 11. Vertical variation in individual PAH concentrations in sediment core samples
13
2.3.2 Pesticides
Sediment samples (both bottom and core) were analyzed for the occurrence of the following
pesticides: DDT, Lindane, Aldrin, Endrin and Dieldrin. All pesticides were found in concentrations
below the limit of determination (10µg/kg).
2.3.3 Petroleum Hydrocarbons
Earlier surveys and monitoring had revealed a significant level of oil pollution in the Danube River
Basin. Therefore, special attention was devoted to the determination of oil pollutants.
Total petroleum hydrocarbon (TPH) pollution was analyzed in bottom sediment samples. TPH
content varied from <5 to 398 mg/kg, with an average concentration of 51.2 mg/kg. Relatively
comparable concentrations were found on both the left and right banks of the river, except for TPH
content at river km 1022. Figure 12 clearly shows a sudden increase in the TPH concentration in
the surface layer of the sediment at the Dobra profile.
TPH
400
300
kg 200
ug/
100
0
1170 1097 1072 1061 1040 1022
990
971
956
924
r km
Left bank
Right bank
Figure 12. Longitudinal variation in bottom-sediment TPH concentration
The vertical TPH distribution in sediment core samples is shown in Figure 13. The vertical variation
was influenced by sedimentation and hydrological conditions.
14
ug/kg TPH
0
20
40
60
80
100
0
10
20
30
40
991-R
cm
956-R
50
924-R
60
70
80
90
Figure 13. Vertical variation in TPH concentration in sediment core samples
2.3.4 Polychlorinated biphenyls
Sediment samples (both bottom and core) were analyzed for the occurrence of the following
polychlorinated biphenyls: PCB 28, PCB 52, PCB 101, PCB 118, PCB 138, PCB 152 and PCB 180. All
polychlorinated biphenyls were found in concentrations below the limit of determination (10µg/kg).
2.3.5 Other WFD Priority Pollutants
The data presented in the tables shows that pentachlorophenol was found neither in the surface
sediment nor in the sediment core samples under investigation. Nonylphenol and octylphenol were
detected in all samples.
Di(ethylhexyl)phthalate (DEHP) was found in 63% of all grab samples, with a median concentration
of 139 µg/kg. Most of the higher concentrations were found in the Serbian section of the Danube.
DEHP concentrations were mainly between 0.1 mg/kg and 0.5 mg/kg. The hot spot was the 7-990
(Donji Milanovac) profile.
15
Di(ethylhexyl) phthalate
7000
6000
5000
4000
k
g
3000
ug/
2000
1000
0
1170 1097 1072 1061 1040 1022 990
971
956
924
r km
Left bank
Right bank
Figure 14. Longitudinal variation in bottom-sediment DEHP concentration
The two analyzed grab samples collected at the Donji Milanovac profile (7-990 L and 7-990R)
showed a high contamination level; however, the DEHP contamination level in the sediment core
from the same profile was significantly lower (see Figure 15).
ug/kg Di(ethylhexyl) phthalate
0
100
200
300
400
500
600
0
10
20
30
991-R
40
956-R
cm 50
924-R
60
70
80
90
Figure 15. Vertical variation in DEHP concentration in sediment core samples
16
3 CONCLUSIONS OF THE SEPTEMBER 2006 SEDIMENT SURVEY
> The sediment sampling survey was carried out in September of 2006 by the ship
ARGUS. Samples for sediment quality investigations were taken from 10 sections
along the Danube, between river km 928 and 1107. The sediment sampling survey
was performed according to the proposed plan: grab samples and core samples
were taken at preselected sites within the Iron Gate reservoir area. Measurements
and laboratory tests were performed in accordance with prescribed and standard
methods.
> Analytical results indicate the spatial (longitudinal, cross-sectional and vertical
profiles) concentration distribution of different contaminants in the bottom
sediment of the Iron Gate Reservoir.
> Based on the results of the analysis of heavy metals in surface sediment samples
from the studied area, no significant downstream tendency of measured
parameters was observed. In general, heavy metal concentrations in sediment
samples collected from the right bank of the river are slightly higher than in those
collected from the left bank.
> Vertical profiles of core samples indicate sediment pollution across the entire
profile, from deeper layers to the sediment surface.
> Sediments of the Danube River can be regarded as unpolluted in terms of arsenic,
chromium, mercury and lead. Concentrations of copper, zinc and nickel were above
quality targets for more than one half of all samples.
> All pesticides and analyzed polychlorinated biphenyls were found in concentrations
below the limit of determination (10µg/kg).
17
4 RECOMMENDATIONS FOR FURTHER MONITORING
PROGRAMMES
The current sediment quality monitoring practice focuses on assessing the compliance of
determined concentrations of selected contaminants with pre-defined quality standards (if
available).
It is recommended to continue sediment quality monitoring within the scope of the TNMN, and to
continue periodical sediment investigations in Joint Danube Surveys. It is necessary to identify and
summarize the pollution which reaches the water via transboundary rivers: the Danube, Drava,
Tisa, Sava, Tamis and Begej; and rivers within Serbia: the Velika Morava and Timok; as well as
the contribution of point and non-point pollution sources within the territory of the Republic of
Serbia which discharge their wastewater into the Danube River.
Further monitoring programmes for the Iron Gate reservoir area should include the following:
> Monitoring of WFD priority hazardous substances that have a strong preference to
accumulate in sediment;
> Given the WFD objective of "non-deterioration" of sediment quality, monitoring of
the above mentioned substances should be applied both in terms of spatial and
trend monitoring. Spatial monitoring is necessary in order to evaluate the extent to
which a certain contaminant is spread over a studied area and, possibly, to detect
its source based on available emission data. Trend monitoring should be carried out
in order to evaluate the temporal pattern over a long period of time. This type of
programme should also include the study of deeper sediment layers in order to
identify the contamination history;
> Along the Iron Gate area, spatial monitoring (surveys) should include at least the
sampling sites from the studies that have been taken into account in this
evaluation (2001 and 2004 data) and those that have been included in the
September 2006 sampling campaign;
> The current monitoring programme (hazard assessment method as the first
element of the Triad-approach) could be complementary, followed by the
evaluation of the toxic effect of sediment on organisms using bioassays, and by
impact assessment using field inventory (assessment of the taxonomic composition
and abundance of benthic invertebrate fauna).
> The frequency of Iron Gate sediment monitoring should be established based on a
common agreement among the stakeholders involved, and based on technical
criteria such as: the current information on sediment quality compliance with EQSs,
the sedimentation rate, and the existing or further identification of new
anthropogenic pressures.
18
5 ANNEX 1: RESULTS OF SEDIMENT SAMPLE PARTICLE-
SIZE DISTRIBUTION ANALYSIS
Crude Tiny
Crude
Middle
Fine
Sandflour Silt Loam
Gravel Sand
grain size d(mm)
Sample code
D60
D10
U Marking
1-1107 R-HU
0,1
0,0043
23,3
L-HU
0,040
0,0034
11,8
Crude Tiny
Crude
Middle
Fine
Sandflour Silt Loam
Gravel Sand
grain size d(mm)
Sample code
D60
D10
U Marking
2-1097 R-HU
0,041
0,0020
20,5
L-HU
0,090
0,0060
15,0
19
Crude Tiny
Crude
Middle
Fine
Sandflour Silt Loam
Gravel Sand
grain size d(mm)
Sample code
D60
D10
U Marking
3-1072 R-HU
0,050
0,0016
31,3
L-HU
0,026
0,0015
17,3
Crude Tiny
Crude
Middle
Fine
Sandflour Silt Loam
Gravel Sand
grain size d(mm)
Sample code
D60
D10
U Marking
4-1061 R-HU
0,050
0,0012
41,7
L-HU
0,032
0,0014
22,9
20
Crude Tiny
Crude
Middle
Fine
Sandflour Silt Loam
Gravel Sand
grain size d(mm)
Sample code
D60
D10
U Marking
5-1040 R-HU
0,053
0,0015
35,3
L-HU
0,062
0,0048
12,9
Crude Tiny
Crude
Middle
Fine
Sandflour Silt Loam
Gravel Sand
grain size d(mm)
Sample code
D60
D10
U Marking
6-1022 R-HU
0,028
0,0026
10,8
L-HU
0,043
0,0037
11,6
21
Crude Tiny
Crude
Middle
Fine
Sandflour Silt Loam
Gravel Sand
grain size d(mm)
Sample code
D60
D10
U Marking
7-990 R-HU
0,026
0,0010
26,0
L-HU
0,030
0,0010
30,0
Crude Tiny
Crude
Middle
Fine
Sandflour Silt Loam
Gravel Sand
grain size d(mm)
Sample code
D60
D10
U Marking
8-971 R-HU
0,064
< 0,0010 > 64,0
22
Crude Tiny
Crude
Middle
Fine
Sandflour Silt Loam
Gravel Sand
grain size d(mm)
Sample code
D60
D10
U Marking
9-956 R-HU
0,021
< 0,0010
> 21,0
L-HU
0,018
< 0,0010
> 18,0
Crude Tiny
Crude
Middle
Fine
Sandflour Silt Loam
Gravel Sand
grain size d(mm)
Sample code
D60
D10
U Marking
10-924 R-HU
0,061
< 0,0010 > 61,0
L-HU
0,046
0,0020
23,0
23
6 ANNEX 2: ANALYTICAL RESULTS OF THE SEDIMENT INVESTIGATION IN SEPT. 2006
(Institute for the development of water resources "jaroslav cerni")
1-1107 L
1-1107 R
2-1097 L
2-1097 R
3-1072 L
3-1072 R
4-1061 L
4-1061 R
V. Morava
V. Morava
V. Morava
V. Morava
location
Ram
Ram
V. Gradiste
V. Gradiste
- upstr
- upstr
- downstr
- downstr
Parameter Unit
Fluoranthene µg/kg
17,9 26,3 <5,0 5,8 18,9
46,5 62,7 37,1
Benzo(b)fluoranthene µg/kg 15,0
17,6 8,5 <5,0
16,5 24,5 28,1
13,1
Benzo(k)fluoranthene µg/kg 10,7
13,2 <5,0 <5,0 11,8
17,1 17,3 6,6
Benzo(a)pyrene µg/kg
12,9 17,6 <5,0 7,8 14,1
24,5 25,9 13,1
Indeno(c,d)pyrene µg/kg
19,3 26,3 10,6 9,7 23,6
29,4 36,7 19,7
Benzo(g,h,i)perylene µg/kg 17,2
22,0 12,7 9,7 23,6 19,6 32,4
17,5
PCB 28
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 52
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 101
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 118
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 138
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 152
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 180
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Aldrin µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Dieldrin µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Endrin µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
DDT (DDE+DDD)
µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
Lindane µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Octylphenol µg/kg
+ + + + + + +
+
Nonylphenol µg/kg
+ +
+ + + + +
+
Pentachlorphenol µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0
<10,0 <10,0 <10,0
TPH µg/kg
Di(2-ethyl-hexyl) phtalate
µg/kg 416,0
99,7
<10,0
<10,0 <10,0 495,6 143,5 179,9
24
1-1107 L
1-1107 R
2-1097 L
2-1097 R
3-1072 L
3-1072 R
4-1061 L
4-1061 R
V. Morava
V. Morava
V. Morava
V. Morava
location
Ram
Ram
V. Gradiste
V. Gradiste
- upstr
- upstr
- downstr
- downstr
Hg mg/kg
<0,4
<0,4
<0,4
<0,4 <0,4 <0,4 <0,4 <0,4
As mg/kg
8,8
8,3
9,3
9,7 7,3
12,7 8,4 12,9
Cd mg/kg
<2,0
<2,0
<2,0
<2,0 <2,0 <2,0 <2,0 <2,0
Pb mg/kg
44,5
44,6
42,9
60,2 47,6 60,2 46,7 71,8
Cu mg/kg
57,4
48,3
58,3
44,0 58,7 55,8 58,3 55,5
Zn mg/kg
214,9
252,5
221,8
232,9 229,8 281,3 233,4 270,7
Cr-tot. mg/kg
35,2
45,4
38,2 63,5 37,7
53,1 37,6 68,3
Ni mg/kg
37,0
60,0
42,7
103,0 41,5 70,9 43,2 105,2
total P
mg/kg
958,3
900,1
859,9 824,8 905,0
983,4 924,8 873,4
Organic N
moisture, %
53,5
54,5
52,7 48,5 57,6
59,1 53,7 56,2
total N, %
0,23
0,22
0,27 0,21 0,25
0,25 0,28 0,24
PAHs
Total µg/kg
163,8
206,3
57,0 56,4
163,1
288,8 425,7 257,7
Naphtalene µg/kg
<5,0
<5,0 <5,0 <5,0
<5,0
9,8 6,5 <5,0
Acenaphthylene µg/kg
<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0
Acenaphthene µg/kg
8,6 13,2 6,3 7,8
11,8
22,0 25,9 24,0
Fluorene µg/kg
12,9
<5,0
<5,0
<5,0
<5,0
<5,0
34,5
30,6
Phenantrene µg/kg
12,9 21,9 <5,0 7,8 16,5
48,9 69,1 48,0
Anthracene µg/kg
<5,0
<5,0 <5,0 <5,0 <5,0
<5,0 <5,0 <5,0
Pyrene µg/kg
15,0
21,9
6,3 7,8 18,9
36,7 45,4 28,4
Chryzene µg/kg
6,4 8,8 4,2 <5,0 7,1 9,8 17,3 6,5
Benzo(a)anthracene µg/kg
15,0 17,5 8,4 <5,0
<5,0
<5,0 23,8 13,1
Dibenzo(a,h)anthracene µg/kg <5,0
<5,0 <5,0 <5,0 <5,0
<5,0 <5,0 <5,0
THC (C10 - C40) ug/kg
µg/kg 49,4
82,5
47,7
21,7 26,9 35,7 20,5 32,3
25
5-1040 L
5-1040 R
6-1022 L
6-1022 R
7-990 L
7-990 R
8-971 R
9-956 L
9-956 R
10-924 L
10-924 R
D.
D.
location
Golubac
Golubac
Dobra
Dobra
Dubova
Tekija
Tekija
M. Vrbica
M. Vrbica
Milanovac
Milanovac
Parameter
Unit
Fluoranthene µg/kg
45,2 <5,0 38,7 53,2 28,4 46,4
16,6
40,9 43,6 9,7
20,4
Benzo(b)fluoranthene µg/kg 15,7
5,0
6,5
26,6
26,2 35,4 18,7 9,1 21,8 <5,0 8,7
Benzo(k)fluoranthene µg/kg 11,8
<5,0
6,5 20,0 19,6 26,5
14,6
13,6 17,5 <5,0
8,7
Benzo(a)pyrene µg/kg
15,7 7,5 12,9 24,4 24,0 33,2
<5,0 <5,0 <5,0 <5,0 14,6
Indeno(c,d)pyrene µg/kg
19,7 <5,0 <5,0 28,8 28,4 35,4
18,7
20,5 24,0 <5,0 17,5
Benzo(g,h,i)perylene µg/kg 17,7
<5,0
<5,0 24,4 24,0 30,9
16,6
15,9 15,9 <5,0 <5,0
PCB
28
µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
<10,0
<10,0 <10,0 <10,0
PCB
52
µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
<10,0
<10,0 <10,0 <10,0
PCB
101
µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
<10,0
<10,0 <10,0 <10,0
PCB
118
µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
<10,0
<10,0 <10,0 <10,0
PCB
138
µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
<10,0
<10,0 <10,0 <10,0
PCB
152
µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
<10,0
<10,0 <10,0 <10,0
PCB
180
µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
<10,0
<10,0 <10,0 <10,0
Aldrin µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Dieldrin
µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
<10,0 <10,0 <10,0 <10,0
Endrin µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0
<10,0 <10,0 <10,0 <10,0 <10,0
DDT (DDE+DDD)
µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
Lindane µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Octylphenol
µg/kg
+ + + + + +
+
+
+
+ +
Nonylphenol
µg/kg
+ + + + + +
+
+
+
+ +
Pentachlorphenol µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0
<10,0 <10,0 <10,0 <10,0 <10,0
TPH µg/kg
Di(2-ethyl-hexyl) phtalate
µg/kg
<10,0 233,2 <10,0 170,4 6615,1 6732,3 <10,0 <10,0 147,7 139,9 112,7
Hg mg/kg
<0,4
<0,4
<0,4
<0,4
<0,4 <0,4 <0,4 <0,4 <0,4 <0,4 <0,4
As mg/kg
17,1
12,2
7,5
12,2
9,3 9,1 9,6
10,0
7,9 5,8 10,8
Cd mg/kg
<2,0
<2,0
<2,0
<2,0
<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0
Pb
mg/kg
45,8 62,4 38,5 48,4 47,6 53,0 57,6
54,1
58,5 23,2 77,6
Cu mg/kg
310,7
63,4
65,4
71,0
69,6 73,8 86,7
78,5
78,3 40,9 104,8
Zn
mg/kg
218,3 295,8 178,3 252,9 237,9 265,2 280,8
291,1
279,3 101,1 340,7
26
5-1040 L
5-1040 R
6-1022 L
6-1022 R
7-990 L
7-990 R
8-971 R
9-956 L
9-956 R
10-924 L
10-924 R
D.
D.
location
Golubac
Golubac
Dobra
Dobra
Dubova
Tekija
Tekija
M. Vrbica
M. Vrbica
Milanovac
Milanovac
Cr-tot.
mg/kg
29,3 56,7 36,3 43,5 46,9 52,2 46,6
57,8 57,4 25,1 59,7
Ni
mg/kg
33,4 77,3 39,8 53,2 60,2 70,1 55,7
68,2
68,3 37,8 72,9
total
P
mg/kg
721,7 984,3 989,2 922,8 851,3 833,3 950,5
932,4
861,9 638,9 1164,8
Organic
N
moisture,
%
49,2 59,8 53,5 54,9 54,2 54,8 51,9
56,0 54,2 48,7 65,7
total N, %
0,16
0,26
0,28
0,26
0,22 0,17 0,19
0,27 0,21 0,19 0,34
PAHs
Total µg/kg
393,1
59,8
221,5
379,3
377,6 477,5 239,2
256,9 277,7 74,3
177,6
Naphtalene µg/kg
11,8
17,4
<5,0
<5,0 126,6 134,8
70,7
9,1 6,5 5,8 8,7
Acenaphthylene µg/kg
<5,0 <5,0 <5,0 <5,0 <5,0 <5,0
<5,0
<5,0
<5,0
<5,0 <5,0
Acenaphthene µg/kg
27,5 7,5 25,8 24,4 13,1 11,0
6,2 20,5 17,5 11,7 17,5
Fluorene µg/kg
33,4
9,9
32,3 33,3 <5,0 17,7
<5,0 27,3 24,0 <5,0 23,3
Phenantrene µg/kg
59,0 <5,0 53,8 59,9 17,5 26,5
25,0
40,9 39,3 31,2 23,3
Anthracene µg/kg
76,7
<5,0
<5,0
<5,0
<5,0 <5,0 <5,0
<5,0 <5,0 <5,0 <5,0
Pyrene
µg/kg
33,4 <5,0 25,8 39,9 28,4 44,2 18,7
31,8 43,9 15,6 20,4
Chryzene µg/kg
9,8
5,0
6,4
17,8
16,3 <5,0 12,5
6,8 8,7 <5,0 5,8
Benzo(a)anthracene µg/kg 15,7 7,5 12,9 26,6 26,2 35,4 20,8
20,5
24,0 <5,0 8,7
Dibenzo(a,h)anthracene
µg/kg
<5,0 <5,0 <5,0 <5,0 <5,0 <5,0
<5,0 <5,0 <5,0 <5,0 <5,0
THC (C10 - C40) ug/kg
µg/kg 25,4
26,8 397,8 <5,0
27,1 14,8 27,2
26,8
15,1 61,0 33,5
27
core 991-
core
core
core
core
core
core
R
991-R
991-R
991-R
991-R
991-R
991-R
10 20 30 40 50 60 67
location
D. Milanovac
D. Milanovac
D. Milanovac
D. Milanovac
D. Milanovac
D. Milanovac
D. Milanovac
Parameter
Unit
Fluoranthene µg/kg
13,7 <5,0 5,3 40,7 38,2 34,7 70,3
Benzo(b)fluoranthene µg/kg
8,6
<5,0 <5,0 27,9 25,5 26,0 36,1
Benzo(k)fluoranthene µg/kg <5,0 <5,0 <5,0 27,9 21,3 23,9 34,3
Benzo(a)pyrene µg/kg 8,6
7,3 7,1 25,7 25,5 15,2 34,3
Indeno(c,d)pyrene µg/kg 6,9
7,3 5,3 21,4 23,3 21,7 32,5
Benzo(g,h,i)perylene µg/kg 6,9 5,4 5,3 19,3
17,0 19,5 27,0
PCB 28
µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 52
µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 101
µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 118
µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 138
µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 152
µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 180
µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Aldrin µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Dieldrin µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Endrin µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
DDT (DDE+DDD)
µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
Lindane µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Octylphenol
µg/kg
+ + + + + + +
Nonylphenol
µg/kg
+ + + + + + +
Pentachlorphenol µg/kg <10,0
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0
TPH
µg/kg
Di(2-ethyl-hexyl) phtalate
µg/kg <10,0
<10,0
<10,0
<10,0 <10,0 <10,0 21,5
Hg mg/kg
<0,4
<0,4
<0,4 <0,4 <0,4 <0,4 <0,4
As mg/kg
7,6
8,5
8,0 13,7 12,5 15,6 16,2
Cd mg/kg
<2,0
<2,0
<2,0 <2,0 <2,0 <2,0 <2,0
Pb mg/kg
27,8
49,6
49,2 98,6 102,5 53,9 44,5
Cu mg/kg
50,7
70,2
77,0 143,9 146,5 159,1 128,4
Zn mg/kg
150,5
228,7
217,3 424,5 405,4 447,1 281,3
Cr-tot. mg/kg
48,4
48,6
52,2 66,5 68,3 73,4 71,2
Ni mg/kg
70,4
63,5
65,6 65,0 68,5 71,0 79,3
total P, mg/kg
mg/kg
628,8
753,3 685,9 922,0 955,2 942,0 768,3
Organic
N
moisture, %
41,8
44,9
43,9 53,4 52,9 53,9 44,5
total N, %
0,13
0,16
0,15 0,26 0,27 0,26 0,12
28
core 991-
core
core
core
core
core
core
R
991-R
991-R
991-R
991-R
991-R
991-R
10 20 30 40 50 60 67
location
D. Milanovac
D. Milanovac
D. Milanovac
D. Milanovac
D. Milanovac
D. Milanovac
D. Milanovac
PAHs
Total µg/kg
114,8
58,1
55,0 334,5 290,8 273,5 468,9
Naphtalene µg/kg
5,1 <5,0 <5,0 6,4 6,4 6,5 5,4
Acenaphthylene
µg/kg
<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 5,4
Acenaphthene µg/kg
10,3
5,4 5,3 10,7 10,6
10,8
16,2
Fluorene µg/kg
13,7 7,3 7,1 17,1 17,0 15,2 21,6
Phenantrene µg/kg
13,7 <5,0 <5,0 40,7 21,2 13,0 41,5
Anthracene µg/kg
<5,0 <5,0 <5,0 6,4 6,4 6,5 10,8
Pyrene µg/kg
12,0
12,7 8,9 38,6 38,2 32,6 59,5
Chryzene µg/kg
5,1 5,4 <5,0 21,4 10,5 19,5 28,9
Benzo(a)anthracene µg/kg 10,3 7,3 10,7 30,0 29,7 28,2 39,7
Dibenzo(a,h)anthracene
µg/kg
<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 5,4
THC (C10 - C40) ug/kg
µg/kg 6,5
11,1
15,9
83,8 65,2 59,3 48,1
core 956-
core 956-
core 956-
core 956-
core 956-
core 956-
core 956-
core 956-
R
R
R
R
R
R
R
R
10 20 30 40 50 60 70 82
location
Tekija Tekija Tekija Tekija Tekija Tekija Tekija Tekija
Parameter
Unit
Fluoranthene µg/kg
12,6
92,1
55,7 38,3 54,7 122,8 57,9 168,3
Benzo(b)fluoranthene µg/kg 6,3 35,1 27,8 19,1 28,5 57,9 26,7 76,2
Benzo(k)fluoranthene µg/kg 10,5 28,5 20,9 17,0 24,1 46,3 24,5 65,5
Benzo(a)pyrene µg/kg
10,5
32,9 25,9 19,1 26,3 60,2 22,3 70,9
Indeno(c,d)pyrene µg/kg
10,5
35,1 <5,0 19,1 21,9 44,0 20,0 51,4
Benzo(g,h,i)perylene µg/kg 8,4 26,3 20,9 14,9 19,7 39,4 17,8 40,7
PCB 28
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 52
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 101
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 118
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 138
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 152
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 180
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Aldrin µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Dieldrin µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Endrin µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
29
core 956-
core 956-
core 956-
core 956-
core 956-
core 956-
core 956-
core 956-
R
R
R
R
R
R
R
R
10 20 30 40 50 60 70 82
location
Tekija Tekija Tekija Tekija Tekija Tekija Tekija Tekija
DDT (DDE+DDD)
µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
Lindane µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Octylphenol
µg/kg
+ + + + + + + +
Nonylphenol
µg/kg
+ + + + + + + +
Pentachlorphenol µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0
TPH
µg/kg
Di(2-ethyl-hexyl) phtalate
µg/kg
<10,0 126,5 193,7 <10,0 <10,0 68,8 <10,0 298,0
Hg
mg/kg
<0,4 <0,4 <0,4 <0,4 <0,4 <0,4 <0,4 <0,4
As mg/kg
10,1
11,6
12,5
12,8 12,1 12,5 15,4 16,6
Cd
mg/kg
<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0
Pb mg/kg
52,4
54,4
56,9
53,0 54,3 56,8 55,1 43,5
Cu mg/kg
81,6
82,9
94,2
102,8 117,6 131,4 151,9 153,1
Zn
mg/kg
300,7 324,4 329,4 323,5 389,8 391,6 463,3 439,3
Cr-tot. mg/kg
52,4
53,0
54,5 57,5 58,9 63,2 68,8 74,1
Ni mg/kg
65,8
67,1
65,6
65,1 60,0 63,9 62,8 65,4
total P, mg/kg
mg/kg
1028,4
1082,9
1039,2 974,7 1060,0 1089,0 1202,9 1158,5
Organic N
moisture, %
52,4
54,4
56,9 53,0 54,3 56,8 55,1 43,5
total N, %
0,24
0,27
0,25 0,23 0,25 0,29 0,27 0,28
PAHs
Total
µg/kg
130,4 572,1 353,1 300,1 635,7 792,4 356,4 976,0
Naphtalene µg/kg
<5,0
15,3
9,3 6,4 6,6 13,9 6,7 8,9
Acenaphthylene
µg/kg
<5,0 <5,0 <5,0 <5,0 <5,0 6,9 <5,0 8,9
Acenaphthene µg/kg
8,4
35,1
23,2 14,9 17,5 34,7 13,4 19,5
Fluorene µg/kg
12,6
46,0
30,2 21,2 24,1 44,0 17,8 28,3
Phenantrene µg/kg
12,6
83,3
51,0 53,2 43,8 101,9 31,2 95,7
Anthracene µg/kg
<5,0
11,0
7,0 6,4 8,8 13,9 8,9 21,3
Pyrene µg/kg
16,8
67,9
41,7 31,9 46,0 99,6 55,7 138,2
Chryzene µg/kg
6,3
24,1
9,3 14,9 10,9 41,7 15,6 62,0
Benzo(a)anthracene µg/kg
14,7 39,5 30,2 23,4 32,8 64,8 37,9 90,3
Dibenzo(a,h)anthracene µg/kg <5,0
<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0
THC (C10 - C40) ug/kg
µg/kg 63,5
40,1
45,5
37 23,6 50,3 54,8 34,5
30
core 924
core 924
core 924
core 924
core 924
core 924
core 924
core 924
R
R
R
R
R
R
R
R
10 20 30 40 50 60 70 80
location
M. Vrbica
M. Vrbica
M. Vrbica
M. Vrbica M.
Vrbica M.
Vrbica M.
Vrbica M.
Vrbica
Parameter
Unit
Fluoranthene µg/kg
59,6
90,1
58,0 74,1 56,3 69,3 97,1 113,9
Benzo(b)fluoranthene µg/kg 25,2 36,0 25,2 31,4 22,5 28,7 34,7 48,5
Benzo(k)fluoranthene µg/kg 20,6 25,7 20,2 26,9 18,0 23,9 27,8 40,1
Benzo(a)pyrene µg/kg
25,2
33,5 25,2 29,2 20,3 26,3 32,4 23,1
Indeno(c,d)pyrene µg/kg
20,6
28,3 <5 24,7 <5 21,5 23,1 40,1
Benzo(g,h,i)perylene µg/kg 11,4
90,1 <5,0 20,2 <5,0 16,7 23,1 33,8
PCB 28
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 52
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 101
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 118
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 138
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 152
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
PCB 180
µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Aldrin µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Dieldrin µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Endrin µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
DDT (DDE+DDD)
µg/kg
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
Lindane µg/kg
<10,0
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0
Octylphenol
µg/kg
+ + + + + + + +
Nonylphenol
µg/kg
+ + + + + + + +
Pentachlorphenol µg/kg
<10,0
<10,0
<10,0 <10,0 <10,0 <10,0 <10,0 <10,0
TPH
µg/kg
Di(2-ethyl-hexyl) phtalate
µg/kg 167,0 399,7 <10,0 18,2 <10,0 <10,0 <10,0 <10,0
Hg
mg/kg
<0,4 <0,4 <0,4 <0,4 <0,4 <0,4 <0,4 <0,4
As
mg/kg
9,6 6,7 7,6 9,0 8,8 9,8 10,6 8,9
Cd
mg/kg
<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0
Pb mg/kg
56,3
50,5
57,0
65,6 60,1 73,4 63,4 64,1
Cu mg/kg
69,2
62,6
65,3
84,5 74,5 84,6 79,6 65,8
Zn
mg/kg
247,4 252,9 262,3 301,0 270,1 294,1 268,3 278,5
Cr-tot. mg/kg
42,6
41,5
43,6 49,2 43,9 51,2 46,3 47,0
Ni mg/kg
55,9
50,5
50,9
51,9 45,0 55,7 50,4 52,9
total P, mg/kg
mg/kg
1081,3
1120,3
1130,8 1163,5 1215,7 1202,8 1327,8 1580,5
Organic N
moisture, %
56,3
61,2
60,3 55,5 55,6 58,2 56,8 59,6
total N, %
0,30
0,30
0,30 0,25 0,29 0,30 0,27 0,25
PAHs
31
core 924
core 924
core 924
core 924
core 924
core 924
core 924
core 924
R
R
R
R
R
R
R
R
10 20 30 40 50 60 70 80
location
M. Vrbica
M. Vrbica
M. Vrbica
M. Vrbica M.
Vrbica M.
Vrbica M.
Vrbica M.
Vrbica
Total
µg/kg
384,9 620,7 370,7 471,7 339,9 425,6 587,6 668,9
Naphtalene µg/kg
11,4
12,9
20,2 9,0 11,3 21,5 25,4 12,7
Acenaphthylene µg/kg
6,9
7,7
7,6 <5,0 6,7 7,2 11,6 8,4
Acenaphthene µg/kg
16,0
28,3
22,7 20,2 20,3 23,9 25,4 23,1
Fluorene µg/kg
22,9
38,6
27,7 29,2 27,0 <5,0 37,0 35,9
Phenantrene µg/kg
48,1
82,4
53,0 60,6 54,0 66,9 92,5 101,3
Anthracene µg/kg
11,4
12,9
10,1 9,0 9,0 9,6 13,9 14,8
Pyrene µg/kg
43,5
74,7
53,0 67,4 59,5 62,2 81,0 101,3
Chryzene µg/kg
25,2
15,4
17,6 26,9 15,8 12,0 16,2 10,5
Benzo(a)anthracene µg/kg
36,7 43,8 30,3 42,7 29,3 35,9 46,3 61,2
Dibenzo(a,h)anthracene µg/kg <5,0
<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0
THC (C10 - C40) ug/kg
µg/kg 10,3 <5,0 <5,0 14,8 18,2 15,5 11,8 27,2
"+" means present (by comparison with mass spectra library), not quantified due to lack of standard
32